1. Galerkin approximation

Apply a forward Euler scheme to the system

$$
2\left(t+t_{0}\right)\left\langle\left[(\mathbb{I}-\mathbb{K}(\beta))\left(\partial_{t} \beta\right)\right](., t), S_{\jmath}\right\rangle=\left\langle[\mathbb{F}(\beta)](., t), S_{\jmath}\right\rangle, \quad \jmath=1,2, \ldots, m
$$

with $\quad \beta(., t)=\sum_{k=1}^{m} \beta_{k}(t) S_{k}$.
The matrix of this system can be singular...

2. Quasi-contour model

The forward Euler scheme can be formally written

$$
\left\{\begin{array}{l}
t_{\ell+1}=t_{\ell}+\delta t_{\ell}, \\
\mathbf{N}^{(\ell+1)}=\mathbf{N}^{(\ell)}+\frac{\delta t_{\ell}}{2 t_{\ell}} Q\left(\mathbf{N}^{(\ell)}\right)^{-1} P\left(\mathbf{N}^{(\ell)}\right), \quad \ell \in \mathbb{N} .
\end{array}\right.
$$

- Is $Q(\mathbf{N})$ singular ?
- Behavior of quasi-contours for some values of m and σ.

$$
m=2, \sigma=(2 / 5,4 / 5)
$$

Domain of computation

$$
\left\{\begin{array}{l}
-\frac{\pi}{2}<N_{1}<\frac{\pi}{2} \\
0<N_{2}<N_{1}+\pi
\end{array}\right.
$$

$$
m=3, \sigma=(2 / 7,4 / 7,6 / 7)
$$

Domain of computation

$$
\left\{\begin{array}{l}
-\frac{\pi}{2}<N_{1}<\frac{\pi}{2} \\
N_{1}-\pi<N_{2}<N_{1}+\pi \\
N_{3}-\pi<N_{2}<N_{3}+\pi \\
0<N_{3}<2 \pi
\end{array}\right.
$$

$$
m=2, \sigma=(2 / 5,4 / 5) .
$$

$$
m=2, \sigma=(2 / 5,4 / 5)
$$

$m=2, \sigma=(2 / 5,4 / 5)$.

$$
m=3, \sigma=(2 / 7,4 / 7,6 / 7) .
$$

$$
m=4, \sigma=(2 / 9,4 / 9,6 / 9,8 / 9)
$$

$$
m=5, \sigma=(2 / 11,4 / 11,6 / 11,7 / 11,9 / 11)
$$

