脳血管障害片麻痺患者の病態生理
と持続的筋伸張を用いた治療効果に関する筋電図学的検討

藤田保健衛生大学大学院
医学研究科・整形外科学（指導教授：才藤栄一）
鈴木俊明

第1章 緒 言
脳血管障害片麻痺患者に認められる痙縮は、この疾患の代表的な臨床症状のひとつであり、随意運動を困難にする要因となっている。そのため、脳血管障害片麻痺患者に理学療法をおこなううえで、痙縮に対してアプローチすることは特に重要な課題になると考えられる。本研究では、H波、F波を用いて脳血管障害片麻痺患者の代表的な症状である痙縮の電気生理学的解釈を行い、その上で、痙縮の治療法としての筋伸張の作用機序を考察した。

第2章 脳血管障害片麻痺患者における痙縮の病態生理
現在、痙縮の定義は、1980年にLanceが述べた説が一般的であるとされている。彼は、「痙縮は、上位運動神経障害の代表的な症状のひとつである伸展反射の相対的亢進により生じる筋伸張速度に依存した受動運動に対する抵抗の増大を主とする」としている。伸展反射については様々なことが解明されてつつある。伸展反射を理解するためには、関連する脊髄の動きを知ることが重要である。そのため、まず脊髄の構造と機能について説明する。

第3節 痙縮に関する脊髄の構造と機能

体性感覚を司る受容器からの情報は、一次求心性線維を経て、脊髄後根から脊髄に達し、上位中枢に伝えられるのみならず、脊髄内の介在ニューロンを介して運動ニューロンに伝えられる。従来、反射路としての一次求心性線維から運動ニューロンへの結合は独立したもののように考えられていた（図1）。しかし、現在では、一次求心性線維から運動ニューロンへの入力は、直接結合する経路のほか、上位中枢からの下行性線維が結合する介在ニューロンを経由しても行われることが明らかってきた（図2）。要するに、一次求心性線維の入力と上位中枢からの下行性線維の入力は介在ニューロンで統合され、運動ニューロンに出力されることとなる。ここで一次求心性線維とは、筋からIa群、Ib群、II群、II群線維および皮質線維からの求心性線維を指す。ところで、上位中枢からの下行性線維には直接路と間接路が存在する。直接路は皮質脊髄路（corticospinal tract；CST）である。間接路は、大脳から脊髄へ直接投射でなく、脳幹から脊髄へと下行する長下行性運動性伝導路（long descending motor tracts）を介して間接的に脊髄へ至る経路である。間接路には、外側群（lateral system）と内側群（medial system）がある。外側群は、外側群とは脊髄側索を下行する線維を指し、皮質脊髄路のほかに赤核脊髄路（rubrospinal tract；RuST）がある。外側群は、主として対側の四肢遠位筋群の運動ニューロンに投射し、屈筋群には興奮性、伸筋群には抑制性に作用する。内側群は脊髄側索を下行する線維であり、前庭脊髄路（vestibulospinal tract；VST）、網様体脊髄路（reticulospinal tract；RetST）、視覚脊髄路（tectospinal tract；TST）、間質性脳
図1 背側反射回路の従来の考え方（文献2より改変引用）
背側反射回路の従来の考え方を示した。図の実線矢印は求心性線維、破線矢印は遠心性線維である。

図2 背側反射回路の最近の考え方（文献2より改変引用）
背側反射回路の最近の考え方について図に示す。実線矢印は求心性線維、破線矢印は遠心性線維である。

雛路（interstitiospinal tract；IST）がある。内側群は主として体幹筋や四肢近位筋を支配する。前庭雛路は体幹筋、四肢近位筋だけでなく頸部の伸筋群運動ニューロンに対して興奮性、屈筋群に対して抑制性に作用し、姿勢調整や体平衡に関して重要な働きをしている。前庭雛路、網様雛路はともに同側伸筋群運動ニューロンには興奮性、屈筋群には抑制性の影響を与えるが、前者は大脳運動野からの影響をほとんど受けないのでに対し、後者は同側大脳から強い影響を受ける。視覚雛路、間質性雛路は、視覚、前庭からの入力により、眼球運動と頭部運動の協調に重要な役割を果たしている。

第2節 伸張反射
伸張反射（stretch reflex）は、伸張された筋の筋紡錘に由来するIα群線維の活動がα運動細胞を興奮させ、その筋自身（同名筋）の収縮をおこす反射活動である。伸張反射は動的伸張反射と静的伸張反射とに分けられる。動的伸張反射は、速い筋伸張により生じる筋紡錘からのIα群線維の活動が、脊髄内で直接もしくは介在ニューロンを介してα運動ニューロンに興奮性に結合しておこる反射である。臨床的には腱反射が相当する。一方、静的伸張反射は筋の静的な伸張により生じる反射であり、臨床的には筋トーヌス検査が該当する。その反射経路は動的伸張反射と同様であるが、動的伸張反射の求心性神経がIα群線維であるのに対して、静的伸張反射ではIα群線維だけでなくII群線維も関与することが特徴である。伸張反射では、以上のようにIα群、II群線維、介在ニューロンおよびα運動ニューロンの役割が重要である。その他
に、上位中枢からの下行性インパルス、γ運動ニューロンによる筋緊縮の感受性の変化、レンショウ細胞による反回抑制、拮抗筋の2シナプス性抑制、異名筋のIa群線維によるシナプス前抑制の影響が、伸張反射を決定する重要な要素としてあげられる。上位中枢からの下行性線維の影響については前述した通りである。その他の要因については以下に説明する。

γ運動ニューロンには、動的γ運動ニューロンと静的γ運動ニューロンの2種類があり、筋緊縮の錐内筋線維を支配し筋細胞の活発度を調整する。そのため、γ運動ニューロンの活動は伸張反射の活動に大きな影響を与える。筋の持続的伸張は、筋緊縮を伸ばすIa群線維の発火頻度を増加させる。その結果、α運動神経が興奮し錐外筋の収縮が生じる。この錐外筋の収縮は錐内筋の緊張を低下させ、Ia群線維の発火頻度を低下させる。ところが、随意運動時、錐外筋の収縮時にはγ運動神経も発火し錐内筋の緊張を維持してIa群線維の発火頻度を持続させる。このようなα運動ニューロンとγ運動ニューロンの関係をα－γ連関（α－γ linkage）と言う。γ運動ニューロンは、上位中枢からの下行路の影響を受ける。具体的には、延髄根幹体側、尾状核、小脳、赤核等側から静的γ運動ニューロンへの、また、大脳皮質運動野、赤核背側、下オリーブ核から動的γ運動ニューロンへの、いずれも興奮性入力がある。γ運動ニューロンへの求心路からの入力としては、Ia群、II群、III群線維は興奮性に、Ib群線維が抑制性に働くといわれている。レンショウ細胞は、α運動神経の側枝が結合する介在ニューロンである。このレンショウ細胞は側枝を送った元のα運動神経を抑制する（同反抑制）。レンショウ細胞の興奮性は、上位中枢からの制御を受ける。異名筋のIa群線維からの抑制性入力（いわゆるシナプス前抑制）も伸張反射に影響を与える。

以上の変数の中で痙攣に重要とされるシナプス前抑制は、H波を用いて広く検討されている。H波は、筋緊縮由来のIa群線維を刺激することにより、その興奮が脊髄と達し、同名筋を支配するα運動神経を興奮させることで生じる筋活動である。H波についての詳細は後述するが、その出現経路と波形振幅により脊髄前角細胞の興奮性のひとつであると考えられている。痙攣を有する患者と神経筋疾患の既往のない健常者とにおいてシナプス前抑制機能H波にて検討した結果、痙攣を有する患者ではシナプス前抑制機能が低下していた。すなわち、痙攣の要因にシナプス前抑制が深く関与していることが示唆される。ここでは、反射研究として最も興味深いH波を用いたシナプス前抑制の研究方法について述べてみたい。まず、異名筋のIa群線維を興奮させるために、脊髄への叩打刺激、振動刺激もしくは異名筋の支配神経に対する電気刺激を行う（条件刺激）。次に、検査筋から脊髄における単シナプス性反射波であるH波を記録するために、支配神経ヘ電気刺激を行いIa群線維を興奮させる（試験刺激）。条件刺激による異名筋のIa群線維の興奮は、異名筋自体のα運動神経には興奮性に作用するが、検査筋のα運動神経には介在ニューロンを介して興奮性にシナプス結合する場合と抑制性介在ニューロンを介して抑制性にシナプス結合する場合がある。前者は両筋が共に関係にある場合であり、後者は異名筋と検査筋が拮抗関係にある場合である。つまり、異名筋と検査筋が拮抗関係にある場合は、異名筋からのIa群線維は介在ニューロンを介しての興奮と検査筋のIa群線維の興奮が収束し、検査筋のα運動神経を促通する。収束とは、多数のシナプス前細胞の軸索が1つの神経細胞に集まり、シナプス結合する神経支配様式のことである。また、促通とは2つの刺激
激の組み合わせにより、各刺激単独の効果を加算したものよりも大きな効果が生じる現象のことであり、検査筋のH波振幅は増加する。一方、異名筋と検査筋とが拮抗関係にある場合には、異名筋からのIa群線維は抑制性介在ニューロンを介して検査筋のα運動神経に抑制性にシナプス結合する。この場合は、異名筋からのIa群線維、抑制性介在ニューロンと検査筋からのIa群線維が束縛し、検査筋のα運動神経を抑制する。検査筋のH波振幅は低下し、その程度で異名筋からのシナプス前抑制の程度が評価できる。具体的な研究として、次の3つがあげられる。第1には、大腿二頭筋腱への叩打刺激を条件刺激としてヒラメ筋H波抑制の程度を検討する方法である（図3の条件1）。両筋の関係は拮抗関係である。そのため、神経筋疾患の既往のない健常者では大腿二頭筋腱の叩打直後からヒラ梅筋H波の抑制が生じ、一定期間、抑制が持続する。このシナプス前抑制は、大腿二頭筋腱への叩打刺激により興奮したIa群線維が、抑制性介在ニューロンを介してヒラメ筋のα運動神経に抑制性にシナプス結合することで起こると考えられている。第2は、前脛骨筋腱への振動刺激を条件刺激として、ヒラメ筋H波抑制の程度を検討する方法である（図4）。両筋の関係は拮抗関係である。本法の結果、ヒラメ筋H波は前脛骨筋腱上への振動刺激により抑制される。これは、相対的に抑制成 lerており、前脛骨筋腱への振動刺激によりIa群線維が興奮し、抑制性介在ニューロンを介してヒラメ筋のα運動神経に抑制性にシナプス結合することで起こるとされている。第3として、大腿神経への電気刺激を条件刺激として、脛骨神経への電気刺激（試験刺激）により誘発したヒラメ筋H波促通の程度を検討する方法である（図3の条件2）。両筋の関係は拮抗関係である。そのため、大腿四頭筋の支配神経である大腿神経を

図3 シナプス前抑制検査方法（文献5より改変引用）
ヒラメ筋H波は前脛骨筋神経刺激（脣部）によって記録した（試験刺激）。条件刺激は2種類あり、条件1は大腿二頭筋腱の叩打刺激、条件2は大腿神経への電気刺激によるものである。

図4 前脛骨筋腱への振動刺激によるヒラメ筋H波抑制
（文献6、7より改変引用）
A: 前脛骨筋腱への振動刺激とヒラメ筋H波の関係の検査である。
B: ヒラメ筋H波は条件刺激直後から抑制され、条件1-試験刺激間隔50msを境にして徐々に回復する。

図5 大腿神経電気刺激時のヒラメ筋H波促通（文献7より改変引用）
A: 大腿神経刺激がヒラメ筋H波に与える影響を検査する様子である。
B: 条件1-試験刺激間隔を変化させた場合のヒラメ筋H波の変化を示している。試験刺激を条件刺激より6ms先行刺激時のヒラメ筋H波振幅を100%として求めたものである。
を基準にした振幅F/M比を用いることが多い。また、F波波形に関与する筋線維数の程度を示すといわれている位相数もある。

第2節 F波測定

F波測定に関しては、以下に示すような記録条件と刺激条件が必要となる。

1 記録条件

F波記録は、通常の運動神経伝導速度検査での、複合筋誘発電位（CMAP）の記録と同様の条件でおこなう。探査電極を筋腹上に貼付し、基準電極を脛上に貼付する。開放電極は記録電極と刺激電極の間に貼付する。F波は、全ての骨格筋から導出できるのが特徴であるが、手部（短母指外転筋、小指外転筋）、足部（短指伸筋、母指外転筋）の小さな筋群から最もよく記録できる。高周波通過（低周波フィルターは、2～20Hzに設定するのが一般的である）と言われるが、100Hzに設定することで波形の基線がより明確になり、各波形の潜時を計測することが容易になる。振幅の感度は100～200μV/Dに設定する。記録速度は上肢では5ms/D、下肢では10ms/Dが適当条件である。手内筋から導出されるF波潜時は約28msであり、足部筋から導出されるF波潜時は約50msである。そのため、画面上の記録は上肢で50ms、下肢では100msは必要となる。この設定でほとんどF波が出ない場合でも、「F波導出不可能」と判断するのではない。記録速度を速くしても出しないかどうかを確認してから判断することが必要である。

2 刺激条件

F波を導出する際、刺激電極は一般的な運動神経伝導速度検査で使用する2極の表面刺激電極が用いられる。刺激電極は、通常、手関節部と足関節部で適当な部位を選び、陰極を中央側に、陽極を末梢側に配置する。刺激強度は最大上刺激（一般には、最大M波振幅が得られる刺激の120～130%の強度）を用いる。刺激頻度は0.5Hz、もしくはそれよりも遅い頻度が一般的である。刺激回数は10～20回以上の連続刺激とする。

第3節 F波波形分析

記録されたF波からは、出現頻度、潜時、振幅について検討することができる。

1 出現頻度

出現頻度は、全刺激に対して何度F波が記録できたかを割合で示したものである。小森らは、F波が神経筋単位の不規則な組みあわせの波形であることから、出現頻度は骨格筋細胞で発火する筋線維数とその発火頻度に影響されると述べている。正中、尺骨、脛骨神経刺激時の出現頻度は正常で40%以上である。この成績は、F波記録筋を安静にした時のものである。出現頻度が80%以上である場合は、その記録筋は座縮していると考えられる。出現頻度は、F波記録筋に随意収縮をおこなわせた場合に増加する。著者らは、神経筋疾患の既往のない健常者において母指球筋の等尺性収縮中に同名筋F波を測定し、出現頻度について検討した。等尺性収縮を増加にともないF波出現頻度は増加した。しかし、軽度の等尺性収縮（20%程度）で既に100%近い成績を認めた。このように、出現頻度はF波記録筋の筋収縮により変化するが、軽度の変化で100%近い出現頻度となるために、詳細な変化を検討できるとは考えにくい。そこで、本研究で述べる筋収縮とF波との関連性においては、出現頻度の変化だけでなく、後述する振幅F/M比、位相数をあわせて検討することが重要となる。

2 潜 時

潜時は、刺激から最初にみられる出現した時点で測定する。潜時には最大潜時、最大潜時、平均潜時の3つがある。最もよく分析にもちいる潜時は最小潜時である。記録された全てのF波のうち、最も早く出現した波形の立ち上がり（陰性もしくは陽性）を最小潜時
とする。また、chronodispersionという指標があり、これはF波最小潜時と最大潜時の差を示している。しかし、これが臨床上有益か否かは、まだ明確にされていない。

3 振幅

振幅の計測には、基線から陰性頂点の電位差、もしくは、陰性頂点から次の陽性頂点までの電位差の2通りある。本研究でのF波振幅の計測には、後者の陰性頂点から次の陽性頂点までの電位差（頂点間振幅）を採用している。振幅は、脊髄前角細胞で再発火する筋線維数に影響される。しかし、脊髄前角細胞での再発火数は1つであるとは限らず、複数の筋線維から出現したF波は、時間に応じて各々重なり複合筋活動電位として記録できる。振幅は波形で様々であり一定しないが、最大M波振幅に対する平均F波振幅の値（振幅F/M比）の正常値は再現性に有する。そのために、臨床検査では振幅F/M比が有用とされている。

4 位相

位相の計測は、F波波形の陰性頂点と陽性頂点の合計数としている。位相に関する検討は少ないが、小森らは陰性頂点数がF波に与える筋線維数をある程度反映すると報告している。F波は、複数の筋線維から出現したF波が多少のずれをともない重なりあって、複合筋電位として記録できる波形である。そのため、F波を構成する筋線維数が多いほど、F波波形の重なりも多いことが予想できる。

第4章 誘発筋電図（H波）について

第1節 H波の概要

H波は、伸展反射を反映する最も簡便な誘発筋電図である。電気刺激により伸展反射の求心路であるIa群線維を順行性に興奮させ、それが単シナプス的に接続している脊髄前角細胞を興奮させ、その結果、支配筋に筋活動電位、すなわちH波を発生させる。H波はF波と比較して刺激前の変化を認めない、常に同じ形で出現するとは限らない。なぜなら、求心性神経にはゴルジ亀殻器官から発射されるIb群線維も含まれており、筋からの求心性神経だけを興奮させることは難しいと言われているためである。複合されたシナプス後電位の大きさやその持続時間は、Ib群線維によるシナプス後抑制の働きによって制限される。通常H波は、神経筋疾患の既往のない健常者のヒラメ筋（脛骨神経刺激）、脛側外根屈筋（正中神経刺激）から安性時に記録することができる。弱い随意収縮による運動神経プールの興奮性増大により、H波振幅は増加するが、潜時はほとんど変化しない。この事象を応用して、検査筋に弱い随意収縮をさせることによってH波は安性時ではほとんど記録できない筋群（例えば前脛筋、橈側外根伸筋、短母指外転筋など）からも導出可能となる。また、H波導出には弱い刺激が用いられるため、波形が不明瞭になりやすい場合もこの方法によりH波を明瞭に導出することができる。H波が出現しない場合は、求心性感覚神経障害もしくは上位中枢神経機能の興奮性的低下が考えられる。求心性感覚神経障害の場合は、求心性感覚神経の興奮性の低下が考えられる。求心性感覚神経障害の場合は、求心性感覚神経の興奮性の低下が考えられる。
期しないためにシナプス後電位が発生せず、そのためH波が出現しないことが考えられる。
第2節 H波測定
検査姿勢は座位もしくは背臥位で、検査筋を伸張しないように留意する。
1 記録条件
H波の記録には、F波同様に表面電極を用いることが多い。探査電極を筋腹中央部に、
基準電極を腕上もしくは指上におく。記録筋は、前述したように安静時では限定される。
具体的には、下肢伸筋群であるヒラメ筋（脛骨神経刺激）、上肢では肘側手根屈筋（正中
神経刺激）である。
2 刺激条件
H波が出現する最適な刺激持続時間は0.5msもしくは1msといわれている。刺激持続時間
の増加にともないH波潜時も延長するが、潜時の平均値は技術的な問題により大きく左右
される。
1a群線維を興奮させる最適な条件は、刺激強度を運動神経の軸索を興奮させる
よりも低強度の刺激として、刺激電極の陰極を神経上に置き、陽極を神経の走行上で陰極
と反対側に置くことである。刺激頻度は、F
波よりも遲い頻度（0.3Hz以下）を用いる。臨
床上は、最初に刺激頻度1.0HzでM波、H波を
記録し、その後刺激頻度を0.2〜0.3Hzに減少
させて最大H波を記録する。
第3節 H波波形分析
1 潜時
潜時は、刺激より最初にふれの出現した時
点の時間で測定し、伝導路全体の伝達時間を
示す。潜時は神経と筋関の相関を示し、年齢と
弱いながら有意な相関を示す。F波の波形は
刺激毎に異なるのが特徴であるが、H波は活
動電位を発生する脊髄前角細胞の発火は同時
期なために波形の変化は認めにくい。そのた
め、一般的にH波振幅は刺激毎で同一である
ことが特徴である。
2 振幅
振幅の計測には、基線から陰性波形頂点の
電位差、もしくは、陰性頂点から次の陽性頂
点までの電位差の2通りある。H波振幅は活
動電位を発生する脊髄前角細胞の数に左右さ
れ、それらの発火時期は同じである。その要
因で、H波振幅はF波振幅と比較して大きい
ことが特徴である。H波振幅はF波振幅と同
様に神経筋疾患の既往のある健常者でも値が
様々であるために、最大M波振幅に対する平均
H波振幅の値である振幅H/M比が広く使われ
ている。
第4節 H波の臨床応用
振幅H/M比は神経疾患患者で増加するが、神
経筋疾患の既往のない健常者でもその値の範
囲が広いかが特徴である。臨床上、明らか
な神経根症状がないにも関わらず振幅H/M比
が亢進している症例は、H波記録筋に著明の
あることが考えられる。
近年、運動課題負荷前後のH波を観察す
ることで、運動調節のメカニズムを検討する
研究が行われるようになった。田中はこ
の領域の研究で生じる技術上の問題として、
運動課題によりH波測定に必要な刺激条件、
記録条件の定常性が低下することやH波測定
の刺激条件、記録条件を定常化するために生
じる運動課題の制限を指摘している。また、
運動課題前後のH波振幅の変化は、課題前の
H波の大きさに影響される。Croneらは運動
課題前のH波振幅が小さい場合には運動課題
の影響を受けにくいと報告した。Malmgren
らは条件－試験刺激での検査手根屈筋H波の
研究で、試験刺激の強度はH波振幅が最大M
波振幅の10〜20%になる程度がよいと報告し
ている。この刺激強度でのH波振幅の変化は、
最も適切に反射活動の変化を示すとされている。
しかし、至適なH波刺激強度を常に決定
することは不可能であるという報告もみられ
る。
最後にF波、H波を区別する特徴をまとめ
第5章 腦血管障害片麻痺患者における上肢F波と神経機能（筋緊張、腱反射）との関連性

第1節 緒 言

前章で説明したように、F波は脊髄前角細胞の興奮性のひとつの指標であり、脳血管障害片麻痺患者においてF波振幅の増大は痙攣の程度を意味するものであると言われている。本章では、痙攣の客観的指標としてのF波の有用性を検討するために、脳血管障害片麻痺患者の麻痺側、非麻痺側の正中神経刺激の指指球筋F波を測定し、臨床的な筋緊張および腱反射の程度と比較、検討した。

第2節 対 象

一例ののみに変動を有する慢性期脳血管障害
患者27名（男性16名、女性11名）、平均年齢60.2±16.3歳を対象とした。対象者の内訳は脳梗塞14名（右片麻痺6名、左片麻痺8名）、脳出血13名（右片麻痺7名、左片麻痺6名）であり、頭部C Tによる障害部位は前頭葉2名、側頭葉20名、側頭－後頭葉3名、側頭－顔面葉1名、顔面葉1名であった。発病期間は平均1年6か月であり、その内訳として4～8か月が11名、8か月～1年が3名、1～2年が3名、2～3年が6名、3年以上が4名であった。

第3節 方法

脳血管障害片麻痺患者の麻痺側および非麻痺側の正中神経刺激による指指球筋F波を測定した。神経に不健全を含んだ患者、脊髄損傷、神経疾患、筋疾患、脳血管障害を除いた。測定場所は、Vs-250（カウンターポイント、デンマーク、スコープ、ジェイミー、シン）を用いた。F波記録条件は、以下の通りとした。幅波電極を用い、探査電極を指指球筋腹に、基準電極を第一指指節骨上に装着した。F波測定条件は、各筋よりF波を記録した。クロストーク（複数の筋活動の混在）により単独筋からのF波導出は困難である。そこで、指指球筋F波の結果を、指指の神経筋の総合的なF波を反応する指標として扱った。周波数帯域は5Hz～2kHzとした。F波刺激条件は、M波が最大になる刺激強度の120%とし、持続時間0.2msの定電流矩形波で手関節正中神経を刺激頻度0.5Hzで連続30回刺激した。F波波形分析は、出現頻度（%）、潜時（ms）、幅波F/M比（%）、位相数を用いた。神経学的検査として筋緊張および腱反射について検討した。筋緊張はF波記録に用いた手持筋（指指球筋）および手関節、肘関節周囲筋を総合的に評価した。腱反射は上腕二頭筋反射、上腕三頭筋反射、腓骨肌反射反射を総合的に評価した。筋緊張、腱反射はそれぞれ亢進群、非亢進群の
2段階に分類した。

以上の結果から、麻痺側、非麻痺側のF波成績の比較、および神経学的検査と麻痺側F波との関係について検討した。

第4節 結 果

麻痺側、非麻痺側のF波の比較結果は以下のようであった。麻痺側ではF波出現頻度は全対象者平均で84.7±21.8％、振幅は26.8±2.38ms、振幅F/M比は3.91±2.02％、位相数は2.74±0.66であり、非麻痺側出現頻度は全対象者平均で69.8±25.4％、振幅は26.6±2.47ms、振幅F/M比は2.96±1.56％、位相数は2.50±0.36であった。麻痺側におけるF波出現頻度、振幅F/M比は非麻痺側の成績に比較して有意な増大を示した（p<0.05）。麻痺側、非麻痺側それぞれの代表的なF波波形を図7に示す。筋緊張、腱反射の程度と麻痺側F波との関係を表1に示す。亢進群20名と非亢進群7名を比較すると、出現頻度ならびに振幅F/M比で亢進群が非亢進群と比較して有意な増加を示した（p<0.05）。位相数は亢進群が非亢進群と比較して増加傾向を認めた。振幅は両者間に差異は認められなかった。

第5節 考 察

神経生理学的検査による脳血管障害患者の病態に関する検討はさまざまな方向からおこなわれている。体性感覚誘発電位を用いた研究では短潜時誘発電位、中潜時誘発電位ともに表在・深部の弁別的感覚の程度に影響されると言われ、Jacobsらは、短潜時成分の振幅と手指機能は有意に相関すると述べている。また、福田らは手指機能回復の程度と電気生理学的評価を総合的に検討している。脳血管障害患者のF波に関する報告は、Libersonらによるものが最初である。彼らはF波振幅は麻痺側で有意に増大すると報告し、その理由は障害によるα活動ニューロンの興奮がF波振幅に反映しているためであると述べている。Fisherらは、麻痺側でF波振幅が増大し、麻痺側の筋緊張状態や腱反射の状態を反映すると報告している。また、FisherらやEisenらは持続時間と振幅の間には正の相関があり、この生理学的要因としては運動神経プールから発射される運動単位数と神経が増大するためと考察している。ただし、これら研究の対象はすべて慢性麻痺を有する患者であり、逆に弛緩性麻痺では一般的に出現頻度、振幅は非麻痺側より麻痺側のほうが低下する。本研究の結果は、麻痺側の出現頻度、振幅比が非麻痺側と比較して有意に増加することを明らかにした。これは、今回の対象の

| 表1 筋緊張、腱反射の程度と麻痺側F波との関係 |
| (n=27) (文献14より改正) |

<table>
<thead>
<tr>
<th></th>
<th>亢進群 (n=20)</th>
<th>非亢進群 (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>出現頻度(％) 平均</td>
<td>88.8</td>
<td>73.2</td>
</tr>
<tr>
<td></td>
<td>SD 22.0</td>
<td>17.6</td>
</tr>
<tr>
<td>振幅(％) 平均</td>
<td>4.47</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td>SD 2.02</td>
<td>0.81</td>
</tr>
<tr>
<td>潜時(ms) 平均</td>
<td>26.7</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td>SD 3.20</td>
<td>2.57</td>
</tr>
<tr>
<td>位相数 平均</td>
<td>2.84</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>SD 0.74</td>
<td>0.36</td>
</tr>
</tbody>
</table>

*: p<0.01
第6章 F波，H波の出現様式の変化と麻痹側上肢の神経機能との関連性

第1節 緒 言

前章から，F波は脳血管障害片麻痺患者における萎縮の程度を検討する指標となり得ることが示唆されたが，近年，萎縮を示す脳血管障害患者において，通常は認められない最大上刺激の刺激条件においてはH波が高頻度に出現することが報告されるようになった。そこで，脳血管障害片麻痺患者において刺激強度の増加にともなうH波とF波の出現様式を検討した。また，出現様式をいくつかのタイプに分類し，タイプ分類と神経機能との関係を検討した。さらに，この結果から，脳血管障害片麻痺患者の理論療法評価にH波とF波の出現様式の変化が利用できるか否かを検討した。

第2節 対 象

一側のみに病変を有する慢性期脳血管障害患者31名（男性17名，女性14名），平均年齢56.0±13.2歳を対象とした。対象者の内訳は脳梗塞18名（右片麻痺7名，左片麻痺11名），脳出血13名（右片麻痺7名，左片麻痺6名）であり，頭部CTによる障害部位は前頭葉5名，側頭葉9名，頂頭葉6名，前頭葉－頂頭葉4名，基底核5名，橋2名であった。罹病期間は平均2年11か月であり，その内訳としては3か月～1年が9名，1～2年が8名，2～3年が2名，3～4年が3名，4～5年が2名，5～6年が2名，6年以上が4名であった。また，コントロール群として神経筋疾患の既往のない健常者30名，平均年齢56.2±12.2歳を対象とした。

第3節 方法

脳血管障害片麻痺患者の麻痺側上肢および神経筋疾患の既往のない健常者の左手側上肢を検査側としてF波，H波を導出した。筋電図バイキング（ニコレー社，マジソン，米国）およびニューロバック（日本光電社，東京，日本）を用いて正中神経（手関節部）に対して，刺激頻度0.5Hz，持続時間0.2msの常時一定とし，刺激強度を経時的に弱刺激から最大上刺激まで増加させた時のF波，H波について検討した。記録には表面電極を用い，探査電極を指指球筋節上に，基準電極を第一指基節骨上に装着し，周波数帯域を5Hz～2kHzに設定した。H波とF波の出現様式は次の4つのタイプに分類した。

タイプ1：H波は出現せず，M波が出現した後でF波が出現するもの。
タイプ2：H波，M波，F波の順序で出現し，F波がH波消失後に出現するもの。
タイプ3：H波，M波，F波の順序で出現するが，H波とF波の判別が困難であるもの。
タイプ4：H波，M波は出現するが，F波の出現を認めないもの。

タイプ別分類におけるH波，F波の判別は，各々の波形出現に必要な刺激条件および波形の様相の相違で決まっていた。しかし，タイプ3，4のように最大上刺激でもH波が出現しない場合，より高頻度に出現するもの。
ていると判断する場合は、弱刺激で得られたH波を指し、H波波形の様相が最大刺激でも不変であることを著者の肉眼で確認した。神経学的検査として筋緊張および腱反射について検討した。筋緊張はF波記録に用いた手内筋（前腕前筋）および手関節、肘関節周囲筋を総合的に評価した。腱反射は上腕二頭筋反射、上腕三頭筋反射、腕骨筋反射を総合的に評価した。筋緊張、腱反射はそれぞれ亢進群（高度、中等度、軽度）および非亢進群の4段階に分類した。

以上の結果から、神経筋疾患の既往のない健常者および脳血管障害片麻痺患者におけるF波、H波の出現様式について検討した。

4節 結 果

神経筋疾患の既往のない健常者におけるF波、H波の出現様式は、全例タイプ1であった（図8）。脳血管障害片麻痺患者におけるF波、H波出現様式の特徴および神経学的検査成績との関係は以下の通りである（表2,3）。タイプ1は10名であり、そのうち筋緊張は非亢進群8名、軽度亢進群2名であった（表2）。タイプ2は8名であり、筋緊張は中等度亢進群4名、軽度亢進群4名であった（表2）。代表的な筋電図波形を図9に示す。タイプ3は7名であり、筋緊張は高度亢進群2名、中等度亢進群4名、軽度亢進群1名であった（表2）。代表的な筋電図波形を図10に示す。タイプ4は6名であり、筋緊張は高

<table>
<thead>
<tr>
<th>表2 刺激強度の増加にともなうH波、F波出現様式と筋緊張の程度との関係（文献54より改変引用）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>タイプ1</td>
</tr>
<tr>
<td>タイプ2</td>
</tr>
<tr>
<td>タイプ3</td>
</tr>
<tr>
<td>タイプ4</td>
</tr>
</tbody>
</table>

筋緊張の程度と出現様式のタイプとの関係を示した。数字は人数を示す。筋緊張の亢進程度が増加するほど、タイプ3（H波、F波が現れること）である。タイプ4（H波が常に出現してもF波が出現しないもの）が多い。

図8 健常者におけるH波、F波出現様式（タイプ1）（文献54より改変引用）

刺激強度を徐々に増加させたときのH波、M波、F波の出現様式を検討した。刺激強度は各波形の右軸に数字（単位、mA）で示した。

刺激強度の増加にともない10mAの刺激強度でM波が出現し、15mAでF波が出現する。しかし、刺激強度の増加にともなうH波の出現は認めない。

記録は母指対立筋（安穏時）、刺激は正中神経（手関節部）で刺激保持時間は0.2msである。波形の感度は5ms/D、振幅の感度はM波10mV/D、F波1mV/Dである。

図9 脳血管障害片麻痺患者におけるH波、F波出現様式（タイプ2）（文献54より改変引用）

刺激強度を徐々に増加させたときのH波、M波、F波の出現様式を検討した。刺激強度は各波形の右軸に数字（単位、mA）で示した。刺激強度の増加にともない9mAの刺激強度でH波が出現し、14mAでM波が出現する。その後F波の振幅は低下し、23mAでH波は消失する。F波は27mAで出現する。波形の感度は5ms/D、振幅の感度はM波10mV/D、F波1mV/Dである。
脳血管障害患者麻痺患者の機能の術後生理と持続的筋伸張を用いた治験方法に関する検討

度亢進5名、中等度亢進1名であった（表2）。代表的な筋電図波形を図11に示す。F波、H波出現様式と腱反射の程度との関係は、筋緊張と同様な傾向であった（表3）。

筋緊張亢進群のうち1症例については、理学療法実施にともなうF波出現様式的変化について検討したので別に紹介する。

症例は46歳の女性、1988年7月右脳出血にて発症（左片麻痺）。1989年10月からK大学医学部附属病院に機能訓練および検査目的で紹介された。神経機能検査は1991年1月に実施し、当時の理学療法評価は以下のようであった。A D Lは全て自立、移動動作に関しては補装具を使用せず自立、上肢使用の動作は罰し手が右側であるために麻痺側である左側を使用することが少なく、補助手としての機能も有していなかった。麻痺側の上肢・手の感觉機能には障害を認めなかった。腱反射、筋緊張は全体的に中等度亢進し、運動の

随意性は軽度から中等度に障害されていた。すなわち動作中に頻繁に合併反応が認められた。プルストローク・ステージは上肢、手指ともにⅢであった。H波およびF波の出現様式は、刺激強度の増加にともない、まずH波が出現し、次にM波が出現した。その後M波振

図11 脳血管障害患者におけるH波、F波出現様式（タイプ4）（文献54より改変引用）
刺激強度を徐々に増加させた時のH波、M波、F波の出現様式を検討した。刺激強度は各波形の右端に数字（単位、mA）で示した。刺激強度の増加にともない9.8mAの刺激強度でH波が出現し、13mAでM波出現する。刺激強度の増加にともなうH波振幅の低下は認めず、F波は出現しない。滞時の速度は5ms/D、振幅の速度はM波2mV/D、H波2mV/Dである。

図10 脳血管障害患者におけるH波、F波出現様式（タイプ3）（文献54より改変引用）
刺激強度を徐々に増加させた時のH波、M波、F波の出現様式を検討した。刺激強度は各波形の右端に数字（単位、mA）で示した。刺激強度の増加にともない7mAの刺激強度でH波が出現し、14mAでM波が出現する。その後H波の振幅は低下するが、明らかな消失は認めない。F波は21mAで出現する。滞時の速度は5ms/D、振幅の速度はM波5mV/D、H波・F波は2mV/Dである。

表3 刺激強度の増加にともなうH波、F波出現様式と腱反射の程度との関係（文献54より改交引用）

<table>
<thead>
<tr>
<th>入群</th>
<th>亢進群</th>
<th>中等度</th>
<th>軽度</th>
<th>非亢進群</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイプ1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>タイプ2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>タイプ3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>タイプ4</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

腱反射の程度と出現様式のタイプとの関係を示した。数字は人数を示す。腱反射の亢進程度が増加するほど、タイプ3（H波、F波が混在するもの）、タイプ4（H波が常に出現してF波が出現しないもの）が多い。
幅は増加したがH波振幅には変化なく、最大上刺激でもH波が残存しF波は誘発されなかった。すなわち、F波出現様式はタイプ4であった。理学療法は週4回、1回40分間、神経生理学的手技を中心としておこなった。具体的には、上肢の筋緊張抑制および随意運動を促通し、日常生活で肢体側上肢を出来るだけ補助的に使用ようにした。その後の理学療法により、訓練開始12か月後で上肢、手の筋緊張、腱反射の亢進程度が軽減し、簡単な動作の補助手としての機能が獲得できた。この時点でのF波、H波出現様式は、刺激強度の増加にともない、まずH波が出現し、次にM波が出現した。さらに刺激強度を強くすると、最大刺激の約3倍の刺激強度で明瞭にH波とF波を区別することは困難であるがF波が出現した。F波出現様式はタイプ4からタイプ3への移行期に変化した（図12）。

第5節 考察

F波検査の際の刺激強度は、最大上刺激、具体的にはM波が最大となる刺激強度の120%程度が一般的に用いられている。通常、神経筋症の既往のない健常者では、最大上刺激ではH波は出現せず、F波が誘発できるといわれている。しかし、脳血管障害片麻痺患者では、最大上刺激でも高頻度にH波が誘発されるためにF波の出現が認められない症例を経験することが少なくない。中角らも上位運動ニューロン障害で、F波波形のなかにH波が混入している可能性を示唆している。そこで今回は、脳血管障害片麻痺患者のH波とF波の出現様式の特徴を検討し、出現様式のタイプと神経機能評価、特に筋緊張、腱反射との関係を検討した。結果は、神経筋症の既往のない健常者では、従来の報告と同様、刺激強度の増大にともなってH波が消失し、その後にF波が出現した。一方、脳血管障害片麻痺患者のH波・F波の出現様式は一様では

![図12 理学療法にともなうH波出現様式（症例46歳、女性）（文献54より改変引用）](image-url)

刺激強度を徐々に増加させた時のH波、M波の出現様式を検討した。刺激強度は各波形の右端に数字（単位、mA）で示した。

初回時は刺激強度を増加させてもH波が高振幅で出現し、F波出現は認めない（左図タイプ4）。理学療法開始12か月後（週4回）のH波振幅は初回検査よりも低下し、最大刺激の約3倍程度の刺激強度でH波の消失を認められるものであった。出現様式はタイプ3への移行期と判断した。時時の振幅は5ms/D、F波の振幅はM波5mV/D、H波0.5mV/Dである。
なく、筋緊張、腱反射が亢進した症例で、刺激強度が増加してもH波が消失せず、F波波形中に混在する例が存在した。さらに、筋緊張、腱反射が高度に亢進している症例では、H波が高頻度で出現しF波を認めない例があった。H波とF波出現様式は、臨床的筋緊張、腱反射の程度により異なることが示唆され、皺縮の量的、質的な客観的機能評価として有用であると考えられた。

第7章 他部位筋の伸張が皺縮筋のH波に及ぼす影響

第1節 緒 言

他部位の筋伸張による皺縮筋の変化についてH波を使って検討した。皺縮に対する治療には生理学的、薬理学的、外科的アプローチがある。生理学的アプローチでは、皺縮に関する神経機構を考慮して、持続的筋伸張訓練、筋電図バイオフィードバック療法などの運動療法、温熱療法、冷凍療法、経皮的電気刺激（transcutaneous electrical nerve stimulation; TENS）などの物理療法、筋性抑制装置を用いた装置療法がある。薬理学的アプローチとしては、筋弛緩薬をもちいた薬物療法、フェノール注射液を末梢神経に投与する運動神経ブロック療法や低濃度のリドカインと無水エタノールを筋内に注射することによって皺縮筋の筋破壊を起こし皺縮を抑制させるMAB療法、A型ボリニス毒素を皺縮筋に筋肉内注射することで皺縮筋の機能不全を起こさせるボリニス毒素療法がある。外科的アプローチとしては、筋性の程度が高度の症例に対して、皺縮の軽減、機能改善、変形防止を目的とした腱延長術などの手術療法が用いられている。臨床ではこれらの治療法を単独で施行するのではなく、いくつかをあわせていくことが必要である。しかしながら、脳血管障害患者においては、単に皺縮の抑制をめざすだけではなく、皺縮により阻害されている協調的運動を改善する必要があり、そのために理学療法、特に運動療法が重要となる。このうち、姿勢反射等が関与すると考えられる他部位の伸張による皺縮の抑制手技は、頻繁に用いられることもあるが、その作用機序に関する検討は乏しい。そこで、その抑制効果発現機序を理解する目的で、麻痺側上肢屈筋群に筋緊張亢進を認める脳血管障害片麻痺患者25名を対象に背屈位にて麻痺側上肢を肩関節90°外転、肘関節伸展位で1分間持続的な筋伸張し、その後の前・中・後の指球筋のH波変化を検討した。

第2節 対 象

脳血管障害片麻痺患者25名（男性12名、女性13名、平均年齢51.0歳）の麻痺側上肢を対象とした。対象者の疾患別内訳は、脳出血15名（右上肢麻痺6名、左上肢麻痺9名）、脳梗塞10名（右上肢麻痺3名、左上肢麻痺7名）であった。全例に上肢の筋緊張亢進を認め、肘関節屈筋群のアシュワース・スケール（Ashworth scale）はスケール1が5名、2が16名、3が4名であった。アシュワース・スケールとは、他動運動時における抵抗の程度を5段階（0〜4）で評価するものであり、スケール0は筋緊張正常、1は軽度筋緊張亢進、2は中等度筋緊張亢進、3は高度筋緊張亢進、4は高度筋緊張亢進でかつ随意運動が困難であることを示す。

第3節 方 法

背屈位において正中神経刺激時のH波、最大M波を麻痺側拇指指間筋から導出した。H波導出の刺激条件は、麻痺側上肢正中神経（手関節部）を頻度0.3Hz、持続時間1.0ms、M波出現閾値の120%の強度とし、連続20回刺激した。以上の方法で、持続的筋伸張前、筋伸張中、筋伸張直後、2、4、6、8、10分後の計8試行のH波、最大M波を導出した。筋伸張方法は、肩関節90°外転、肘関節伸展位保持（図13）とし、筋伸張時間は1分間とし
図13 筋伸張方法（症例 26歳 女性 左片麻痺）
筋伸張は徒手で，肩関節90°内外転，肘関節伸展位保持とした（伸張時間1分間）矢印方向への圧迫を加えている。

前と比較して有意に低下していた（p<0.05, paired t-test）。また，この2群の持続的筋伸張後に
する振幅H/M比の変化は大きく4つのタイプに分類できた。第1に筋伸張中の中間振幅H/M比の抑制
が，筋伸張後に持続するもの（タイプ1，図14），第2には筋伸張後に振幅H/M比が徐々に回復するもの（タイプ2，図15），
第3には筋伸張後に振幅H/M比が急に回復する

<table>
<thead>
<tr>
<th>伸張前</th>
<th>伸張後</th>
</tr>
</thead>
<tbody>
<tr>
<td>0分</td>
<td></td>
</tr>
<tr>
<td>2分</td>
<td></td>
</tr>
<tr>
<td>4分</td>
<td></td>
</tr>
<tr>
<td>6分</td>
<td></td>
</tr>
<tr>
<td>8分</td>
<td></td>
</tr>
<tr>
<td>10分</td>
<td></td>
</tr>
</tbody>
</table>

図14 脳血管障害片麻痺患者の肩関節および肘関節周囲筋
の持続的筋伸張前後における血流H波変化（タイプ1）
持続的筋伸張によりH波振幅は低下し，その効果は
伸張後も持続した。（振幅H/M比：伸張前15.5%，
伸張中18.7%，伸張10分後39.5%）。基準の値は5
ms/D，振幅の値は2mV/Dである。刺激強度は
M波出現閾値の120%であり，波形はH波を示して
いる。M波は別に最大上刺激で記録し，M波最大振
幅を求めた。

<table>
<thead>
<tr>
<th>伸張前</th>
<th>伸張中</th>
<th>伸張後</th>
</tr>
</thead>
<tbody>
<tr>
<td>0分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図15 脳血管障害片麻痺患者の肩関節および肘関節周囲筋
の持続的筋伸張前後における血流H波変化（タイプ2）
持続的筋伸張によりH波振幅は低下するが，伸張後
は徐々に回復した。（振幅H/M比：伸張前17.3%，
伸張中36.2%，伸張10分後12.4%）。基準の値は10
ms/D，振幅の値は5mV/Dである。刺激強度は
M波出現閾値の120%であり，波形はH波を示して
いる。M波は別に最大上刺激で記録し，M波最大振
幅を求めた。

- 284 -
筋における筋緊張の改善を認めた。しかし、伸張効果の持続しないタイプ3もしくは伸張後に悪化するタイプ4では伸張後に母指球筋の筋緊張亢進を認めた。全体的な印象であるが、持続的筋伸張にともなう母指球筋H波の振幅H/M比の変化と筋緊張の臨床所見の変化は相関を認めた。H波潜時は、持続的筋伸張前26.6±2.21 ms、筋伸張中26.7±2.25 ms、筋伸張後26.8±2.16 msであった。つまり、H波潜時は、持続的筋伸張前、伸張中、伸張後で変化を認めなかった。なお、筋緊張の持続的筋伸張前のアシュワース・スケールの相関においてもH波潜時に差異は認められなかった。

第13節 考察

持続的筋伸張の効果としては、神経筋疾患の既往のない健常者ではゴルジ腱器官、筋紡錘および皮膚からの求心性入力が、脊髄前角細胞の興奮性を減弱させることで筋緊張も抑制されるという説が必要である。生理学療法領域において脳血管障害片麻痺患者に対して持続的筋伸張をおこなう場合は筋緊張の抑制を目的としている。しかし、脳血管障害片麻痺患者への持続的筋伸張が脊髄前角細胞の興奮性に与える影響に関しての報告は、諸家のより様々である。Angelらは脳血管障害片麻痺患者の麻痺偏側下顔筋に持続的筋伸張を行った時のH波を検討し、H波振幅は持続的筋伸張中に増加したと報告している。一方、橋爪らは脳血管障害片麻痺などの症候麻痺患者を対象に、下顔三頭筋の持続的筋伸張時におけるH波を検討し、安静時と比較して変化を認めなかったと報告した。この要因として、持続的筋伸張により筋長が伸張することで脊髄前角細胞が抑制されるというlength dependent inhibitionが働いているにも関わらず、症候麻痺患者には基本的な病態として安静時でも脊髄前角細胞が興奮しているために、持続的筋伸張の効果が検出できなかったと考えられている。
前角細胞の抑制に関与したという報告では、15分、あるいは30分以上の持続的筋伸張が脳血管障害片麻痺患者などの症例状態の抑制に関与しているというものがある。しかし、実際にはこのような長時間の持続的筋伸張を徒手でおこなうことは困難である。

脳血管障害片麻痺患者に対する理学療法臨床場面では、持続的筋伸張によって伸張筋だけでなく、それ以外の筋群の筋緊張が減弱することを経験する。持続的筋伸張を実際の臨床において有効に応用するためには、徒手による短時間の持続的筋伸張で筋縮筋を効率的に抑制する方法を考案する必要がある。著者はいくつかの筋細胞に対して同時に対持続的筋伸張をおこなうことによって短時間に効率的に筋緊張を抑制できる可能性を考えている。以上のような持続的筋伸張の効果を客観的に検討するため、肩関節と肘関節周囲筋に対し同時に持続的筋伸張をを行った場合における筋伸張前、筋伸張中、筋伸張後の母指球筋の H波変化を比較した。今回は、脳血管障害片麻痺患者で筋緊張亢進を認めやすい肩関節内転筋、肘関節屈筋群を筋伸張の対象とした。

なお、著者らの未発表データはあるが、母指球筋の H波と上肢筋群の筋縮の程度には関係があることを既に検討した。そのため、本研究は、縮縮近位筋の筋伸張が遠位筋の筋縮に与える影響を検討する目的で行った。

結果は、3つにまとめられた。1）肘関節屈筋群の筋緊張・腱反射が軽度に亢進している症例では、筋伸張中、後とも母指球筋の H波の抑制程度は少なかった。（2）肘関節屈筋群の筋緊張が中等度以上亢進していた症例では伸張中に母指球筋の振幅H/М比の低下を認めた。（3）肘関節屈筋群の筋緊張が中等度以上亢進していた症例における伸張後の振幅H/М比の変化は次の方に分けられた。すなわち、振幅H/М比の低下が持続するもの、徐々に回復するもの、急速に回復するもの、そして筋伸張前よりも増加するものであった。また、本研究での持続的筋伸張による振幅H/М比の変化と筋緊張の変化には相関を認めた。

脳血管障害片麻痺患者の麻痺側上肢は一般に屈筋優位に縮縮を認める。その代表筋である肘関節屈筋群を持続伸張した際、この筋の縮縮が軽度であれば二次的マトリクスのH波に及ぼす抑制効果が軽度にとまった。一方、筋緊張亢進が中等度以上である場合、筋伸張中に母指球筋の H波は抑制されることが考えられる。一方、筋緊張の持続伸張が遠位筋の縮縮を抑制する効果を認めた。一方、筋紧張伸張の適応を決定する際に、H波は有用な検査になると考えられた。

本研究で用いた筋電図を同時に筋伸張した時の治療療法や上肢近位筋の縮縮抑制が遠位筋の縮縮に与える影響（上肢内での遠隔部筋伸張効果）について検討した報告はほとんどなく、上肢の持続的筋伸張効果を H波で検討しているものも見当たらないか否かである。そのため、本研究のような散布障害上肢の縮縮のコントロールに関する研究は理論療法の精緻化のため必要である。今後も持続的筋伸張の伸張時間を変化させての検討や筋伸張の長期効果についての検討を行いたい。

第8章 総括

H波、F波を用いて脳血管障害片麻痺患者の代表的な症状である縮縮の電気生理学的解釈を行い、その上で、縮縮の治療法としての筋伸張の作用機序を考察した。F波は、運動神経への神経刺激により逆性の運動を機能するインパルスに対し一部の脊髄前角細胞が再興奮し、伸張筋活動
電位である。H波は、電気刺激により伸張反射を心直である Ia 細線維が順徳性インパルスを生じ、単にナプス的に脊髄角の細胞を興奮させた結果生じる筋活動電位である。

1）痙攣の客観的指標としてのF波の有用性を検討するため、脳血管障害片麻痺患者27名を対象とし、麻痺側および非麻痺側の正中神経刺激による指圧球筋に波を測定し、臨床的な筋緊張および腱反射の程度と比較、検討した。F波出現頻度、振幅F/M比は麻痺側と比較して麻痺側で有意に増加し、その増加は筋緊張・腱反射の程度とよく相関した。F波は、指標の検討する指標となり得ることが示唆された。

2）筋収を示す脳血管障害患者において、通常は認められない条件でH波が出現することが報告されるようになった。そこで、H波、F波の出現性と臨床所見との比較を行うため、脳血管障害片麻痺患者31名、神経筋疾患の既往のない健常者20名を対象として、刺激強度の増加に伴うH波とF波の出現様式と臨床的な筋緊張および腱反射の程度との関連性を検討した。神経筋疾患の既往のない健常者では、従来の報告と同様、刺激強度の増大に伴って出現していたH波が消失し、その後にF波が出現した。一方、脳血管障害片麻痺患者のH波・F波の出現様式は一様ではなく、筋緊張、腱反射が亢進した症例で、刺激強度が増加してもH波が消失せず、F波形中に混在する例が存在した。さらに、筋緊張・腱反射が高度に亢進している症例では、H波が高頻度で出現しF波を認めない例があった。H波・F波出現様式は、臨床的な筋緊張・腱反射の程度により異なることが示唆され、痙攣の量的、質的な客観的機能評価として有用であると考えられた。

3）痙攣筋への理学療法アプローチとして代表的な持続的筋伸張の効果についてH波を用いて検討した。麻痺側上肢筋群筋に筋緊張亢進を認める脳血管障害片麻痺患者25名に肩関節90°外転、肘関節伸展位で1分間持続的筋伸張した際の伸張前・中・後の指圧球筋のH波変化を検討した。結果は、3つにまとめられた。（1）肘関節屈筋群の筋緊張・腱反射が軽度に亢進している症例では、筋伸張中、後とも指圧球筋のH波の抑制程度は少なかった。（2）肘関節屈筋群の筋緊張が中等度以上亢進していた症例では伸張中に指圧球筋の振幅H/M比の低下を認めた。（3）肘関節屈筋群の筋緊張が中等度以上亢進していた症例における伸張後の振幅H/M比の変化は、振幅H/M比の低下が持続けるもの、徐々に回復するものの、急速に回復するもの、そして伸張前よりも増加するものの4通りに分けられた。被伸張筋の痙攣が軽度であれば二次的な指圧球筋のH波に及ぼす抑制効果が軽度にとどまる一方、痙攣が中等度以上である場合、筋伸張中に指圧球筋のH波は抑制されたことから、痙攣近位筋の伸張は遠位筋の痙攣も抑制することを電気生理学的に確認できた。しかし、その効果の持続に関しては、効果が持続けるものか逆にリバウンドするものまであった。これらを著を異なる症例の臨床症状には大きな差異はなく、筋伸張の適応決定の際に、H波は有用な検査になると考えられた。

今回の研究から、痙攣評価におけるF波、H波の有用性を認めるものの、波形記録筋の筋緊張、腱反射が高度に亢進している症例では、最大上刺激でH波が出現することがある。そのため、筋緊張、腱反射の亢進程度が高度な症例に対する痙攣の評価にはH波が有効であると考える。反対に、筋緊張、腱反射が亢進していない症例の指圧球筋H波は波形の特性上、導出されないことがある。この場合は、指圧球筋F波を検討する必要がある。要するに、痙攣評価では、症例の臨床症状の特徴に応じてH波、F波を使い分ける必要があること。
とともに示唆された。

今後さらに、被伸張筋と導出筋の運動学的関係の検討、長期の効果の検討、さらにコンディショニング手法の導入を行いたいと考えている。

文献
3) 杉内友理子、篠田義一（1993）運動制御にかかわる脊髄神経機構（I）脊髄の機能構成、脊髄脊髄ジャーナル 6, 287 - 291.
12) 小森聡夫、高橋良輔、広瀬和彦、樋口 忠雄（1988）F波の波形と出現順序。臨床波30, 1 - 6.
14) 鈴木俊明、藤原哲司、武田 功（1993）脳卒中片麻痺患者の安静時F波の特性。理療ジャーナル 27, 277 - 281.
30) 田中聰作 (1991) 腹反射、脳神経43, 1003－1008.
37) 福田秀隆, 近藤和泉, 松本茂男, 廣井久典, 上條美樹子, 岩田 学, 安田 竜, 石山 隆 (1989) 脳卒中手手指機能回復予測に関する電気生理学的検討. 臨臨床21, 736－740.
50) 犬権貞彦, 吉池保雄, 林 富士雄, 櫻井信夫, 祖父江逸郎 (1985) 下肢三頭筋の受動的伸展によるF反射の変動一正常群と癒癒群の比較一. 臨神経25, 911－919.

- 289 -
53) 鈴木俊明，才藤栄一 (2000) 反射・総合リハ 28，515-520。
54) 鈴木俊明，八瀧善郎，藤原哲司，大工谷新一，廣瀬浩昭 (1985) 腦血管障害片麻麻患者のH波、F波出現形様－神経症状，運動機能との関係－，理学療法学22，90-95。